Concentration

From Wikipedia, the free encyclopedia

Jump to: navigation, search

In chemistry, concentration is the measure of how much of a given substance there is mixed with another substance. This can apply to any sort of chemical mixture, but most frequently the concept is limited to homogeneous solutions, where it refers to the amount of solute in a substance.

To concentrate a solution, one must add more solute, or reduce the amount of solvent (for instance, by selective evaporation). By contrast, to dilute a solution, one must add more solvent, or reduce the amount of solute.

Unless two substances are fully miscible there exists a concentration at which no further solute will dissolve in a solution. At this point, the solution is said to be saturated. If additional solute is added to a saturated solution, it will not dissolve (except in certain circumstances, when supersaturation may occur). Instead, phase separation will occur, leading to either coexisting phases or a suspension. The point of saturation depends on many variables such as ambient temperature and the precise chemical nature of the solvent and solute.

Analytical concentration includes all the forms of that substance in the solution.

Contents

  • 1 Qualitative description
  • 2 Quantitative notation
    • 2.1 Mass versus volume
    • 2.2 Molarity
    • 2.3 Molality
    • 2.4 Mole fraction
    • 2.5 Mass percentage
    • 2.6 Mass-volume percentage
    • 2.7 Mass-volume ratio
    • 2.8 Volume-volume percentage
    • 2.9 Normality
    • 2.10 Formal
    • 2.11 "Parts-per" notation
      • 2.11.1 Notes for clarity:
  • 3 Techniques used to determine concentration
  • 4 Table of concentration measures
  • 5 See also
  • 6 References

[edit] Qualitative description

These glasses containing red dye demonstrate qualitative changes in concentration. The solutions on the left are more dilute, compared to the more concentrated solutions on the right.

Often in informal, non-technical language, concentration is described in a qualitative way, through the use of adjectives such as "dilute" or "weak" for solutions of relatively low concentration and of others like "concentrated" or "strong" for solutions of relatively high concentration. Those terms relate the amount of a substance in a mixture to the observable intensity of effects or properties caused by that substance. For example, a practical rule is that the more concentrated a chromatic solution is, the more intensely colored it is. eg of Qualitative Analysis:- Litmus Paper, flame color of solution.

[edit] Quantitative notation

For scientific or technical applications, a qualitative account of concentration is almost never sufficient, therefore quantitative measures are needed to describe concentration. There are a number of different ways to quantitatively express concentration; the most common are listed below. They are based on mass or volume or both. Depending on what they are based on it is not always trivial to convert one measure to the other, because knowledge of the density might be needed to do so. At times this information may not be available, particularly if the temperature varies. eg:- breathalyzers, testing drinking water.

[edit] Mass versus volume

Some units of concentration -particularly the most popular one (molarity)- require knowledge of a substance's volume, which -in contrast to mass- is variable depending on ambient temperature and pressure. In fact (partial) molar volume can even be a function of concentration itself. This is why volumes are not necessarily completely additive when two liquids are added and mixed. Volume-based measures for concentration are therefore not to be recommended for non-dilute solutions or problems where relatively large differences in temperature are encountered (e.g. for phase diagrams).

Unless otherwise stated, all the following measurements of volume are assumed to be at a standard state temperature and pressure (for example 25 degrees Celsius at 1 atmosphere or 101.325 kPa). The measurement of mass does not require such restrictions.

Mass can be determined at a precision of < 0.2 mg on a routine basis with an analytical balance and more precise instruments exist. Both solids and liquids are easily quantified by weighing.

The volume of a liquid is usually determined by calibrated glassware such as burettes and volumetric flasks. For very small volumes precision syringes are available. The use of graduated beakers and cylinders is not recommended as their indication of volume is mostly for decorative rather than quantitative purposes. The volume of solids, particularly of powders, is often difficult to measure, which is why mass is the more usual measure. For gases the opposite is true, the volume of a gas can be measured in a gas burette, if care is taken to control the pressure. The mass is not so easy to measure due to buoyancy effects.

[edit] Molarity

See Main article molar solution

Molarity (M) denotes the number of moles of a given substance per litre of solution. For instance:

 \frac{2.0 \quad moles \quad of \quad dissolved \quad particles}{4.0 \quad litres \quad of \quad liquid} = solution \quad of \quad 0.5 M

Such a solution may be described as "0.5 molar." This can be misinterpreted as "0.5 moles of solute per 1.0 litre of solvent", which can be true only if no volume change occurs on adding the solute to the solvent. This is why preparation of a solution of known molarity involves adding an accurately weighed amount of solute to a volumetric flask, adding some solvent to dissolve it, then adding more solvent to fill to the volume mark. (Working with moles can be highly advantageous, as they enable measurement of the absolute number of particles in a solution, irrespective of their weight and volume. This is often more useful when performing stoichiometric calculations.).

When discussing the molarity of minute concentrations, such as in much pharmalogical research, molarity is sometimes expressed in micromolars (1 millionth of a molar) or nanomolars (1 billionth of a molar).

Although molarity is by far the most commonly used measure for concentration, particularly for dilute aqueous solutions, it does suffer from a number of disadvantages. Masses can be determined with great precision as balances are often very precise. Determining volume is often not as precise. In addition, a volume of a liquid changes with temperature so that the molarity also changes without adding or removing any mass. For non-dilute solutions another problem is that the molar volume of a substance is itself a function of concentration so that volume is not strictly additive.

Following the SI system of units, the National Institute of Standards and Technology, the United States authority on measurement, considers the term molarity and the unit symbol M to be obsolete, and suggests instead the 'amount-of-substance concentration' (c) with units mol/m3 or other units used alongside the SI such as mol/L.[1] This recommendation has not been generally implemented in academia yet.

[edit] Molality

Molality (m or molal) denotes the number of moles of a given substance per kilogram of solvent (not solution). Note that molality is represented by the symbol (m), while molarity is represented by the symbol (M). The two symbols are not meant to be confused and should not be used as symbols for units. The SI unit for molality is mol/kg. For instance: adding 1.0 moles of dissolved particles to 2.0 kilograms of solvent constitutes a solution with a molality of 0.5 mol/kg. Such a solution may be described as "0.5 molal". The term molal solution is used as a shorthand for a "one molal solution", i.e. a solution which contains one mole of the solute per 1000 grams of the solvent.

The determination of molality only requires a good balance, because the masses of both solvent and solute can be obtained by weighing. Using a balance is often more precise than working with volumetric flasks burettes and pipettes. Another advantage of molality is that it does not change with the temperature as it deals with the mass of solvent, rather than the volume of solution. Volume typically increases with increase in temperature resulting in decrease in molarity. Molality of a solution is always constant irrespective of the physical conditions like temperature and pressure.

In a dilute aqueous solution near room temperature and standard atmospheric pressure, the molarity and molality will be very similar in value. This is because 1000 g of water roughly corresponds to a volume of 1 L at these conditions, and because the solution is dilute, the addition of the solute makes a negligible impact on the volume of the solution.

However, in all other conditions, this is usually not the case.

[edit] Mole fraction

The mole fraction Χ, (also called molar fraction) denotes the number of moles of solute as a proportion of the total number of moles in a solution. For instance: 1 mole of solute dissolved in 9 moles of solvent has a mole fraction of 1/10 or 0.1. Mole fractions are dimensionless quantities.

This measure is used very frequently in the construction of phase diagrams. It has a number of advantages:

As both mole fractions and molality are only based on the masses of the components it is easy to convert between these measures. This is not true for molarity, which requires knowledge of the density.

[edit] Mass percentage

Mass percentage denotes the mass of a substance in a mixture as a percentage of the mass of the entire mixture. For instance: if a bottle contains 40 grams of ethanol and 60 grams of water, then it contains 40% ethanol by mass. Commercial concentrated aqueous reagents such as acids and bases are often labeled in concentrations of weight percentage with the specific gravity also listed. In older texts and references this is sometimes referred to as weight-weight percentage (abbreviated as w/w). In water pollution chemistry, a common term of measuring total mass percentage of dissolved solids in an aqueous medium is total dissolved solids.

[edit] Mass-volume percentage

Mass-volume percentage, (sometimes referred to as weight-volume percentage or percent weight per volume and often abbreviated as % m/v or % w/v) describes the mass of the solute in g per 100 mL of the resulting solution. Mass-volume percentage is often used for solutions made from a solid solute dissolved in a liquid. For example, a 40% w/v sugar solution contains 40 g of sugar per 100 mL of resulting solution.

[edit] Mass-volume ratio

Often used in medicine and pharmacology, a ratio of the weight of a drug dissolved in a volume of water, is presented as, grams of solute : mL of water. Practitioners use the term "dilution" when referring to this arcane unit. The most ubiquitous example is epinephrine solutions where a 1:100,000 solution has 1 g epinephrine in 100,000 mL water. This is equivalent to 0.01 g/L epinephrine solution.

When the volume considered is a gas a specific approach is needed: the gas' pressure and temperature conditions must be considered. A typical use is in air polution emission quantification. It is very common to find values such as 50 g/Nm3 or 50 g/m3N. The "N" before or after the cubic meter indicates that the gas is under the Standard conditions for temperature and pressure.

[edit] Volume-volume percentage

Volume-volume percentage (sometimes referred to as percent volume per volume and abbreviated as % v/v) describes the volume of the solute in mL per 100 mL of the resulting solution. This is most useful when a liquid - liquid solution is being prepared. For example, a 40% v/v ethanol solution contains 40 mL ethanol per 100 mL total volume.

[edit] Normality

This type of concentration highlights the chemical nature of salts: in solution, salts break apart into distinct reactive species (ions such as H+, Fe3+, or Cl-). The concept normality, which is a measure of reactive species in a solution was developed as a way to deal with this issue.

Definition:

A normal is one gram equivalent of a solute per liter of solution. The definition of a gram equivalent varies depending on the type of chemical reaction that is discussed - it can refer to acids, bases, redox species, and ions that will precipitate.

Usage:

It is critical to note that normality measures a single ion which takes part in an overall solute. For example, one could determine the normality of hydroxide or sodium in an aqueous solution of sodium hydroxide, but the normality of sodium hydroxide itself has no meaning. Nevertheless it is often used to describe solutions of acids or bases, in those cases it is implied that the normality refers to the H+ or OH ion. For example, 2 Normal sulfuric acid (H2SO4), means that the normality of H+ ions is 2, or that the molarity of the sulfuric acid is 1. Similarly for 1 Molar H3PO4 the normality is 3 as it contains three H+ ions.

Specific cases:

As ions in solution can react through different pathways, there are three common definitions for normality as a measure of reactive species in solution:

Note: The same ion at the same concentration can possess a different normality, depending on which kind of reaction it participates in

Practical uses:

The measure of normality is extremely useful for titrations - given two species that are known to react with a known ratio, one simply needs to scale the volumes of solutions with known normalities to get a complete reaction with the following equation:

NaVa=NbVb

Because this concentration measure depends on the very chemistry of the reaction the solute participates in, its use has been largely abandoned. NIST has also stipulated that this unit is obsolete and recommends discontinuing its use. This recommendation is likely to find widespread acceptance in academia.

[edit] Formal

The formal (F) is yet another measure of concentration similar to molarity. Formal concentrations are sometimes used when solving chemical equilibrium problems. It is calculated based on the formula weights of chemicals per liter of solution. The difference between formal and molar concentrations is that the formal concentration indicates moles of the original chemical formula in solution, without regard for the species that actually exist in solution. Molar concentration, on the other hand, is the concentration of species in solution.

For example: if one dissolves sodium carbonate (Na2CO3) in a litre of water, the compound dissociates into the Na+ and CO32- ions. Some of the CO32- reacts with the water to form HCO3- and H2CO3. If the pH of the solution is low, there is practically no Na2CO3 left in the solution. So, although we have added 1 mol of Na2CO3 to the solution, it does not contain 1 M of that substance. (Rather, it contains a molarity based on the other constituents of the solution.) However, one can still say that the solution contains 1 F of Na2CO3.

[edit] "Parts-per" notation

The parts-per notation is used in some areas of science and engineering because it does not require conversion from weights or volumes to more chemically relevant units such as normality or molarity. It describes the amount of one substance in another. It is the ratio of the amount of the substance of interest to the amount of that substance plus the amount of the substance it is in.

According to the U.S. National Institute of Standards and Technology (NIST) Guide for the Use of the International System of Units (SI), "the language-dependent terms part per million, part per billion, and part per trillion ... are not acceptable for use with the SI to express the values of quantities."[2]