Silver
From Wikipedia, the free encyclopedia
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
General | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name, Symbol, Number | silver, Ag, 47 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chemical series | transition metals | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Group, Period, Block | 11, 5, d | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Appearance | lustrous white metal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight | 107.8682(2) g·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [Kr] 4d10 5s1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 18, 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical properties | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Color | silver | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Phase | solid | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density (near r.t.) | 10.49 g·cm−3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Liquid density at m.p. | 9.320 g·cm−3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melting point | 1234.93 K (961.78 °C, 1763.2 °F) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boiling point | 2435 K (2162 °C, 3924 °F) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of fusion | 11.28 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of vaporization | 258 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat capacity | (25 °C) 25.350 J·mol−1·K−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic properties | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Crystal structure | face-centered cubic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidation states | 1 (amphoteric oxide) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electronegativity | 1.93 (scale Pauling) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionization energies | 1st: 731.0 kJ/mol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2nd: 2070 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3rd: 3361 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius | 160 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius (calc.) | 165 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 153 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Van der Waals radius | 172 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Miscellaneous | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magnetic ordering | diamagnetic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrical resistivity | (20 °C) 15.87 n Ω·m | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal conductivity | (300 K) 429 W·m−1·K−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal diffusivity | (300 K) 174 mm²/s | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal expansion | (25 °C) 18.9 µm·m−1·K−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Speed of sound (thin rod) | (r.t.) 2680 m·s−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Young's modulus | 83 GPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Shear modulus | 30 GPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bulk modulus | 100 GPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Poisson ratio | 0.37 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mohs hardness | 2.5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vickers hardness | 251 MPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Brinell hardness | 24.5 MPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS registry number | 7440-22-4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Selected isotopes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
References |
Silver (IPA: /ˈsɪlvə(ɹ)/) is a chemical element with the symbol Ag (Latin: argentum) and atomic number 47. A soft white lustrous transition metal, it has the highest electrical and thermal conductivity for a metal. It occurs as a free metal (native silver) as well as various minerals such as argentite and chlorargyrite. Most silver is produced as a by-product of copper, gold, lead, and zinc mining.
Silver has been known since antiquity. It has long been valued as a precious metal and used in currency, ornaments and jewelry, as well as utensils (hence the term silverware). Silver bullion has the ISO currency code of XAG. Today, it is also used in photographic film, electrical contacts, and mirrors. Elemental silver is also used to catalyze chemical reactions.
Silver has certain antimicrobial activity. In the past, dilute solutions of silver nitrate were used as disinfectants, though this has been supplanted by other treatments.
Contents
|
[edit] Notable characteristics
Silver is a very ductile and malleable (slightly harder than gold) monovalent coinage metal with a brilliant white metallic luster that can take a high degree of polish. It has the highest electrical conductivity of all metals, even higher than copper, but its greater cost and tarnishability has prevented it from being widely used in place of copper for electrical purposes, though it was used in the electromagnets used for enriching uranium during World War II (mainly because of the wartime shortage of copper). Another notable exception is in high-end audio cables, although the actual benefits of its use in this application are questionable. Silvers color is silvery
Among metals, pure silver has the highest thermal conductivity (only the non-metal diamond's is higher), whitest color, the highest optical reflectivity (although aluminium slightly outdoes it in parts of the visible spectrum), and is a poor reflector of ultraviolet light. Silver also has the lowest contact resistance of any metal. Silver halides are photosensitive and are remarkable for the effect of light upon them. This metal is stable in pure air and water, but does tarnish when it is exposed to ozone, hydrogen sulfide, or air containing sulfur. The most common oxidation state of silver is +1 (for example, silver nitrate: AgNO3); a few +2 (for example, silver(II) fluoride: AgF2) and +3 compounds (for example, silver sulfate: Ag2(SO4)3 ) are also known.
[edit] Occurrence and extraction
Silver is found in native form, combined with sulfur, arsenic, antimony, or chlorine and in various ores such as argentite (Ag2S) and horn silver (AgCl). Another ore it is found in is pyrargyrite. The principal sources of silver are copper, copper-nickel, gold, lead and lead-zinc ores obtained from Peru, Mexico, China and Australia.
This metal can also be produced during the electrolytic refining of copper and by application of the Parkes process on lead metal obtained from lead ores that contain small amounts of silver. Commercial grade fine silver is at least 99.9% pure silver and purities greater than 99.999% are available. In 2005, Peru was the top producer of silver with almost one-seventh world share closely followed by Mexico, reports the British Geological Survey
[edit] Applications
A major use of silver is as a precious metal. Jewellery and silverware are traditionally made from Sterling silver (Standard silver) an alloy of 92.5% silver with 7.5% copper. Sterling silver is harder than pure silver, and has a lower melting point (893 °C) than either pure silver or pure copper. Britannia silver is an alternative hallmark-quality standard containing 95.8% silver, often used to make silver tableware and wrought plate. Silver is used in medals, denoting second place. Some high end musical instruments are made from sterling silver, such as the flute.
The malleability and non-toxicity of silver make it useful in dental alloys for fittings and fillings.
The name of the United Kingdom monetary unit "pound" reflects the fact that it originally represented the value of one troy pound of sterling silver. Silver has been coined to produce money since 700 BC by the Lydians, in the form of electrum. Later, silver was refined and coined in its pure form. The words for "silver" and "money" are the same in at least 14 languages.
Photography used 24% of silver consumed in 2001, in the form of silver nitrate and silver halides, while 33% was used in jewellery, 40% for industrial uses and only 3% for coins and medals.[1]
Silver-ions and silver compounds show a toxic effect on some bacteria, viruses, algae and fungi typical for heavy metals like lead or mercury, but without the high toxicity to humans that is normally associated with them. Its germicidal effects kill many microbial organisms in vitro.
Its germicidal effects make silver utensils valued, and increase its value as jewelry.
The exact process of silver's germicidal effect is still not well understood, although different theories exist. One of these is the oligodynamic effect, which explains the effect on microbial lifeforms but does not explain certain antiviral effects.
Some electrical and electronic products use silver for its superior conductivity, even when tarnished. For example, printed circuits are made using silver paints,[2] and computer keyboards use silver electrical contacts. Some high-end audio hardware (DACs, pre-amplifiers, etc) are fully silver wired, which is believed to cause the least loss of quality in the signal. Silver cadmium oxide is used in high voltage contacts because it can minimize arcing.
Silver is also used to make solder and brazing alloys, electrical contacts, and high capacity silver-zinc and silver-cadmium batteries. Silver in a thin layer on top of a bearing material can provide a significant increase in galling resistance and reduce wear under heavy load, particularly against steel.
Mirrors which need superior reflectivity for visible light are made with silver as the reflecting material in a process called silvering, though common mirrors are backed with aluminium. Using a process called sputtering, silver (and sometimes gold) can be applied to glass at various thicknesses, allowing different amounts of light to penetrate. This is most often seen in architectural glass and tinted windows on vehicles.
Silver's catalytic properties make it ideal for use as a catalyst in oxidation reactions; for example, the production of formaldehyde from methanol and air by means of silver screens or crystallites containing a minimum 99.95 weight-percent silver. Silver (upon some suitable support) is probably the only catalyst available today to convert ethylene to ethylene oxide (later hydrolyzed to ethylene glycol, used for making polyesters)—a very important industrial reaction.
Oxygen dissolves in silver relatively easily compared to other gases present in air. Attempts have been made to construct silver membranes of only a few monolayers thickness. Such a membrane could be used to filter pure oxygen from air.
[edit] In medicine
Hippocrates, the father of modern medicine, wrote that silver had beneficial healing and anti-disease properties, and the Phoenicians used to store water, wine, and vinegar in silver bottles to prevent spoiling. In the early 1900s people would put silver dollars in milk bottles to prolong the milk's freshness. Silver compounds were used successfully to prevent infection in World War I before the advent of antibiotics. Silver nitrate solution was a standard of care but was largely replaced by silver sulfadiazine cream (SSD Cream)[3] which was generally the "standard of care" for the antibacterial/antibiotic treatment of serious burns until the late 1990s. Now, other options such as silver coated dressings (activated silver dressings) are used in addition to SSD cream, and may present advantages such as pain reduction and capacity for treatment at home.
The widespread use of silver went out of fashion with the development of modern antibiotics. However, recently there has been renewed interest in silver as a broad spectrum antimicrobial. In particular, it is being used with alginate, a naturally occurring biopolymer derived from seaweed, in a range of silver alginate products designed to prevent infections as part of wound management procedures, particularly applicable to burn victims. In addition, Samsung has introduced washing machines with a final rinse containing silver ions to provide several days of antibacterial protection in the clothes.[4] Additionally, Kohler has introduced a line of toilet seats that have silver ions embedded to kill germs. A company called Thomson Research Associates has begun treating products with Ultra Fresh, an anti-microbial technology involving "proprietary nano-technology to produce the ultra-fine silver particles essential to ease of application and long-term protection."[5]
[edit] Health precautions
Silver plays no known natural biological role in humans, and possible health effects of silver are a subject of dispute. Silver itself is not toxic but most silver salts are, and some may be carcinogenic.
Silver and compounds containing silver (like colloidal silver) can be absorbed into the circulatory system and become deposited in various body tissues leading to a condition called argyria which results in a blue-grayish pigmentation of the skin, eyes, and mucous membranes. Although this condition does not harm a person's health, it is disfiguring and usually permanent. Argyria is rare and mild forms are sometimes mistaken for cyanosis.
[edit] Alternative medicine
Today, various kinds of silver compounds, or devices to make solutions or colloids containing silver, are sold as remedies for a wide variety of diseases. Although mostly harmless, some people using these home-made solutions use far too much and develop argyria over a period of months or years, and several have been documented in the last few years in the medical literature, including one possible case of coma associated with a high intake of silver (see medical references). It is strongly advised to notify a doctor when taking silver as a form of self-medication.
[edit] In food
In India, foods can be found decorated with a thin layer of silver, known as Vark. Silver as a food additive is given the E number E174 and classed as a food coloring. It is used solely for external decoration, such as on chocolate confectionery, in the covering of dragées and the decoration of sugar-coated flour confectionery. In Australia, it is banned as a food additive. In the United States, silvered almonds are a common wedding confection.
[edit] In clothing
Silver is a natural antimicrobial ingredient that has been used for years by professionals in the field of wound healing,[citation needed] mainly because of its scientifically proven antimicrobial efficacy.[citation needed] Silver inhibits the growth of bacteria and fungus. It keeps odour to a minimum and reduces the risk of bacterial and fungal infection. In clothing, the combination of silver and moisture movement (wicking) is the best combination to reduce the harmful effects of prolonged use in active and humid conditions.
Silver is used in clothing in two main forms:
- A form in which silver ions are integrated into the polymer from which yarns are made (a form of nanotechnology)
- A form in which the silver is physically coated onto the yarns.
In both cases the silver prevents the growth of a broad spectrum of bacteria and fungi. At the same time, silver is a very skin-friendly and highly compatible agent to which – unlike many antibiotics – bacteria rarely build up resistance.
Recorded use of silver to prevent infection dates to ancient Greece and Rome. It was rediscovered in the Middle Ages, where it was used for several purposes, such as to disinfect water and food during storage, and also for the treatment of burns and wounds as wound dressing. In the 19th century, sailors on long ocean voyages would put silver coins in barrels of water and wine to keep the liquid pure. Pioneers in America used the same idea as they made their journey from coast to coast. Silver solutions were approved in the 1920s by the US Food and Drug Administration for use as antibacterial agents. Today silver containing wound dressings are well established for clinical wound care and have recently been introduced in consumer products such as sticking plasters.[citation needed]
[edit] Other silver compounds
- Silver carbonate is used to remove Carbon dioxide from the air.
- Silver chloride can be made transparent and is used as a cement for glass.
- Silver chloride is a widely used electrode for pH testing and potentiometric measurement.
- Silver fulminate is a powerful explosive.
- Silver iodide has been used in attempts to seed clouds to produce rain.
- Silver nitrate is used as an antiseptic and in some chemical reactions.
- Silver sulfide, also known as Silver Whiskers, is formed when silver electrical contacts are used in an atmosphere rich in hydrogen sulfide.
- Silver oxide is used as a positive electrode (cathode) in watch batteries.
[edit] Price
Silver is currently about 1/50th the price of gold by mass, and approximately 70 times more valuable than copper. Silver once traded at 1/6th to 1/12th the price of gold, prior to the Age of Discovery and the discovery of great silver deposits in the Americas, most notably the vast Comstock Lode in Virginia City, Nevada, USA. This then resulted in the debate over cheap Free Silver to benefit the agricultural sector, which was among the most prolonged and difficult in that country's history and dominated public discourse during the latter decades of the nineteenth century.
Over the last 100 years the price of silver and the gold/silver price ratio has fluctuated greatly due to competing industrial and store of value demands. In 1980 the silver price rose to an all-time high of US$49.45 per troy ounce. By December 2001 the price had fallen to US$4.15 per ounce, and in May 2006 it had risen back as high as US$15.21 per ounce. As of 2006, current silver prices (and most other metal prices) have been rather volatile, for example quickly dropping from the May high of US$15.21 per ounce to a June low of US$9.60 per ounce before rising back above US$12 per ounce by August.[6]
It is of note that in Judaic Law the price of silver is important. The lowest fiscal amount that a Jewish court, or Beth Din, can convene to adjudicate a case over is a shova pruta (value of a Babylonian prutra coin). This is fixed at 1/8 of a gram of pure, unrefined silver, at market price.
[edit] Isotopes
Naturally occurring silver is composed of the two stable isotopes 107Ag and 109Ag with 107Ag being the more abundant (51.839% natural abundance). Standard atomic mass: 107.8682(2) u. Twenty-eight radioisotopes have been characterised with the most stable being 105Ag with a half-life of 41.29 days, 111Ag with a half-life of 7.45 days, and 112Ag with a half-life of 3.13 hours.
All of the remaining radioactive isotopes have half-lives that are less than an hour and the majority of these have half-lives that are less than 3 minutes. This element has numerous meta states with the most stable being 108mAg (t* 418 years), 110mAg (t* 249.79 days) and 106mAg (t* 8.28 days).
Isotopes of silver range in atomic weight from 93.943 u (94Ag) to 123.929 u (124Ag). The primary decay mode before the most abundant stable isotope, 107Ag, is electron capture and the primary mode after is beta decay. The primary decay products before 107Ag are palladium (element 46) isotopes and the primary products after are cadmium (element 48) isotopes.
The palladium isotope 107Pd decays by beta emission to 107Ag with a half-life of 6.5 million years. Iron meteorites are the only objects with a high enough palladium/silver ratio to yield measurable variations in 107Ag abundance. Radiogenic 107Ag was first discovered in the Santa Clara meteorite in 1978.
The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus Ag correlations observed in bodies, which have clearly been melted since the accretion of the solar system, must reflect the presence of live short-lived nuclides in the early solar system.
[edit] Folklore and mass culture
Because of the mysticism surrounding silver's lunar associations, as well as the aesthetic qualities of the white, reflective metal that cause it to be associated with purity, silver in European Folklore has long been traditionally believed to be an antidote to various maladies and mythical monsters. Notably, silver was believed to be a repellent against vampires (this primarily originates from its holy connotations; also, mirrors were originally polished silver, and as such, vampires allegedly cannot be seen in them because they have no soul) and it was also believed that a werewolf, in his bestial form, could only be killed by a weapon or bullet made of silver. This has given rise to the term "silver bullet", which is used to describe things that very effectively deal with one specific problem.
The Lone Ranger of radio serials, comic strips, and TV programs leaves a silver bullet as a calling card.
In the Gospels, Jesus' disciple Judas Iscariot is infamous for having, according to the New Testament, taken a bribe of thirty pieces of silver from religious leaders in Jerusalem to turn Jesus Christ over to the Romans.
In heraldry, the argent, in addition to being shown as silver (this has been shown at times with real silver in official representations), can also be shown as white. Occasionally, the word "silver" is used rather than argent; sometimes this is done across-the-board, sometimes to avoid repetition of the word "argent" in blazon.