Lead

From Wikipedia, the free encyclopedia

Jump to: navigation, search
82 thalliumleadbismuth
Sn

Pb

Uuq
Periodic Table - Extended Periodic Table
General
Name, Symbol, Number lead, Pb, 82
Chemical series Post-transition metals or poor metals
Group, Period, Block 14, 6, p
Appearance bluish gray
Standard atomic weight 207.2(1)  g·mol−1
Electron configuration [Xe] 4f14 5d10 6s2 6p2
Electrons per shell 2, 8, 18, 32, 18, 4
Physical properties
Phase solid
Density (near r.t.) 11.34  g·cm−3
Liquid density at m.p. 10.66  g·cm−3
Melting point 600.61 K
(327.46 °C, 621.43 °F)
Boiling point 2022 K
(1749 °C, 3180 °F)
Heat of fusion 4.77  kJ·mol−1
Heat of vaporization 179.5  kJ·mol−1
Heat capacity (25 °C) 26.650  J·mol−1·K−1
Vapor pressure
P(Pa) 1 10 100 1 k 10 k 100 k
at T(K) 978 1088 1229 1412 1660 2027
Atomic properties
Crystal structure cubic face centered
Oxidation states 4, 2
(Amphoteric oxide)
Electronegativity 2.33 (scale Pauling)
Ionization energies
(more)
1st:  715.6  kJ·mol−1
2nd:  1450.5  kJ·mol−1
3rd:  3081.5  kJ·mol−1
Atomic radius 180  pm
Atomic radius (calc.) 154  pm
Covalent radius 147  pm
Van der Waals radius 202 pm
Miscellaneous
Magnetic ordering diamagnetic
Electrical resistivity (20 °C) 208 n Ω·m
Thermal conductivity (300 K) 35.3  W·m−1·K−1
Thermal expansion (25 °C) 28.9  µm·m−1·K−1
Speed of sound (thin rod) (r.t.) (annealed)
1190  m·s−1
Young's modulus 16  GPa
Shear modulus 5.6  GPa
Bulk modulus 46  GPa
Poisson ratio 0.44
Mohs hardness 1.5
Brinell hardness 38.3  MPa
CAS registry number 7439-92-1
Selected isotopes
Main article: Isotopes of lead
iso NA half-life DM DE (MeV) DP
204Pb 1.4% >1.4×1017 y Alpha 2.186 200Hg
205Pb syn 1.53×107 y Epsilon 0.051 205Tl
206Pb 24.1% Pb is stable with 124 neutrons
207Pb 22.1% Pb is stable with 125 neutrons
208Pb 52.4% Pb is stable with 126 neutrons
210Pb trace 22.3 y Alpha 3.792 206Hg
Beta 0.064 210Bi
References
Lead ore
 
Lead pipe in Roman baths

Lead (IPA: /lɛd/) is a chemical element in the periodic table that has the symbol Pb (Latin: plumbum) and atomic number 82. A soft, heavy, toxic and malleable poor metal, lead is bluish white when freshly cut but tarnishes to dull gray when exposed to air. Lead is used in building construction, lead-acid batteries, bullets and shot, and is part of solder, pewter, and fusible alloys. Lead has the highest atomic number of all stable elements - although the next element, bismuth, has a half life so long (longer than the estimated age of the universe) it can be considered stable. Like mercury, another heavy metal, lead is a potent neurotoxin which accumulates in soft tissues and bone over time.

Contents

  • 1 Notable characteristics
  • 2 History
  • 3 Occurrence
    • 3.1 Lead mining in Wales
    • 3.2 Processing of metal from ore
    • 3.3 Production and Recycling
  • 4 Isotopes
  • 5 Health effects
    • 5.1 Biochemistry of lead poisoning
  • 6 Descriptive chemistry
  • 7 Applications
    • 7.1 Former applications
  • 8 Phrases
  • 9 See also
  • 10 Literature
  • 11 References
  • 12 External links

[edit] Notable characteristics

Lead has a dull luster and is a dense, ductile, very soft, highly malleable, bluish-white metal that has poor electrical conductivity. This true metal is highly resistant to corrosion. Because of this property, it is used to contain corrosive liquids (e.g. sulfuric acid). Lead can be toughened by adding a small amount of antimony or other metals to it. Lead is the only metal in which there is zero Thomson effect. Lead is also poisonous. All lead, except 204Pb, is the end product of a complex radioactive decay (see isotopes of lead below).

[edit] History

Lead has been commonly used for thousands of years because it is widespread, easy to extract and easy to work with. It is highly malleable and ductile as well as easy to smelt. In the early Bronze Age lead was used with antimony and arsenic. Lead was mentioned in the Book of Exodus (15:10). Alchemists thought that lead was the oldest metal and associated it with the planet Saturn. Lead pipes that bear the insignia of Roman emperors are still in service and many Roman "pigs" (ingots) of lead figure in Derbyshire lead mining history and in the history of the industry in other English centres. Lead's symbol Pb is an abbreviation of its Latin name plumbum for soft metals; originally it was plumbum nigrum, where plumbum candidum was tin. The English word "plumbing" also derives from this Latin root.

Lead is also very toxic, and lead poisoning was recognized even by the ancients. Similarly, in the Twentieth Century, the use of lead in paint pigments was sharply reduced because of the danger of lead poisoning, especially to children.[1][2][3] By the mid-1980s, a significant shift in lead end-use patterns had taken place. Much of this shift was a result of the U.S. lead consumers' compliance with environmental regulations that significantly reduced or eliminated the use of lead in nonbattery products, including gasoline, paints, solders, and water systems. Recently, lead use is being further curtailed by the European Union's RoHS directive. Lead may still be found in harmful quantities in stoneware, vinyl (such as that used for tubing and the insulation of electrical cords), and brass manufactured in China.

[edit] Occurrence

Native lead does occur in nature, but it is rare. Currently lead is usually found in ore with zinc, silver and (most abundantly) copper, and is extracted together with these metals. The main lead mineral is galena (PbS), which contains 86.6% lead. Other common varieties are cerussite (PbCO3) and anglesite (PbSO4).

[edit] Lead mining in Wales

Lead ore (galena) is found commonly in north-east Wales. The North-east Wales Orefield was by far the most important source of lead and zinc in Wales and second in national importance only to the North Pennine Orefield. Lead mining dates back to at least Roman times and continued until well into the 20th century. Galena is present in steeply-dipping fissure veins and in pipes and is in Mississippi Valley-type lead-zinc-fluorite and copper-dolomite associations. The mineralisation occurs in the upper parts of the Loggerheads and Cefn Mawr Formations of the Carboniferous Limestone.[4]

[edit] Processing of metal from ore

The principal ores of lead are galena (PbS), anglesite (PbSO4), and cerussite (PbCO3). Most ores contain less than 10% lead, and ores containing as little as 3% lead can be economically exploited. Ores are crushed and concentrated by froth flotation typically to 70% or more. Sulfide ores are roasted, producing primarily lead oxide and a mixture of sulfates and silicates of lead and other metals contained in the ore.[5]

Lead oxide from the roasting process is reduced in a coke-fired blast furnace.[6] This converts most of the lead to its metallic form. Three additional layers separate in the process and float to the top of the metallic lead. These are slag (silicates containing 1.5% lead), matte (sulfides containing 15% lead), and speiss (arsenides of iron and copper). These wastes contain concentrations of copper, zinc, cadmium, and bismuth that can be recovered economically, as can their content of unreduced lead.[5]

Metallic lead that results from the roasting and blast furnace processes still contains significant contaminants of arsenic, antimony, bismuth, zinc, copper, silver, and gold. The melt is treated in a reverberatory furnace with air, steam, and sulfur, which oxidizes the contaminants except silver, gold, and bismuth. The oxidized contaminants are removed by drossing, where they float to the top and are skimmed off.[5][7]

Most lead ores contain significant concentrations of silver, resulting in the smelted metal also containing silver as a contaminant. Metallic silver as well as gold is removed and recovered economically by means of the Parkes process.[8][5][7]

Desilvered lead is freed of bismuth according to the Betterton-Kroll process by treating it with metallic calcium and magnesium, which forms a bismuth dross that can be skimmed off.[5][7]

Very pure lead can be obtained by processing smelted lead electolytically by means of the Betts process. The process uses anodes of impure lead and cathodes of pure lead in an electrolyte of silica fluoride.[5][7]

[edit] Production and Recycling

Worldwide production and consumption of lead is increasing. Total annual production is about 8 million tonnes; about half is produced from recycled scrap. The main countries are Australia, China and the US, which account for more than half of primary production. The most common lead ore is galena or lead sulphide.[9]

[edit] Isotopes

Main article: Isotopes of lead

Lead has four stable isotopes - 204Pb, 206Pb, 207Pb, 208Pb and one common radiogenic isotope 202Pb with a half-life of ~53,000 years.

[edit] Health effects

Main article: Lead poisoning

Lead is a poisonous metal that can damage nervous connections (especially in young children) and cause blood and brain disorders. Long term exposure to lead or its salts (especially soluble salts or the strong oxidant PbO2) can cause nephropathy, and colic-like abdominal pains. The concern about lead's role in cognitive deficits in children has brought about widespread reduction in its use (lead exposure has been linked to schizophrenia).

Many older houses may still contain substantial amounts of lead paint. White lead paint has been withdrawn from sale in industrialized countries, but the yellow lead chromate is still in use; for example, Holland Colours Holcolan Yellow. It is generally recommended that old paint should not be stripped by sanding, as this generates inhalable dust.

Lead salts used in pottery glazes have on occasion caused poisoning, when acid drinks, such as fruit juices, have leached lead ions out of the glaze.[citation needed] It has been suggested that what was known as "Devon colic" arose from the use of lead-lined presses to extract apple juice in the manufacture of cider. Lead is considered to be particularly harmful for women's ability to reproduce. For that reason many universities do not hand out lead-containing samples to women for instructional laboratory analyses.[citation needed] Lead acetate (also known as sugar of lead) was used by the Roman Empire as a sweetener for wine, and some consider this to be the cause of the dementia which affected many of the Roman Emperors. [citation needed]

Lead as a soil contaminant is a widespread issue, since lead may enter soil through (leaded) gasoline leaks from underground storage tanks or through a wastestream of lead paint or lead grindings from certain industrial operations.

[edit] Biochemistry of lead poisoning

In medicine, lead inhibits α-aminolevulinate (ALA) dehydratase and ferrochelatase, preventing both porphobilinogen formation and the incorporation of iron into protoporphyrin IX, the final step in heme synthesis. Inhibition of both of these steps results in ineffective heme synthesis and subsequent microcytic (hemoglobin-poor) anemia.[citation needed]

[edit] Descriptive chemistry

Various oxidized forms of lead are easily reduced to the metal. An example is heating PbO with mild organic reducing agents such as glucose. A mixture of the oxide and the sulfide heated together without any reducing agent will also form the metal.[8]

2PbO + PbS   →   3 Pb + SO2

Metallic lead is attacked only superficially by air, forming a thin layer of oxide that protects it from further oxidation. The metal is not attacked by sulfuric or hydrochloric acids. It does, however, dissolve in nitric acid with the evolution of nitric oxide gas to form dissolved Pb(NO3)2.

3 Pb + 8 H+ + 8 NO3   →   3 Pb2+ + 6 NO3 + 2 NO + 4H2O

When heated with nitrates of alkali metals, metallic lead oxidizes to form PbO (also known as litharge), leaving the corresponding alkali nitrite. PbO is representative of lead's II oxidation state. It is soluble in nitric and acetic acids, from which solutions it is possible to precipitate halide, sulfate, chromate, carbonate (PbCO3), and basic carbonate (Pb3(OH)2(CO3)2) salts of lead. The sulfide can also be precipitated from acetate solutions. These salts are all poorly soluble in water. Among the halides, the iodide is less soluble than the bromide, which, in turn, is less soluble than the chloride.[11]

The II oxide is also soluble in alkali hydroxide solutions to form the corresponding plumbite salt.[8]

PbO + 2OH + H2O   →   Pb(OH)42–

Chlorination of plumbite solutions causes the formation of lead's IV oxidation state.

Pb(OH)42– + Cl2   →   PbO2 + 2 Cl + 2 H2O

Lead dioxide is representative of the IV state, and is a powerful oxidizing agent. The chloride of this oxidation state is formed only with difficulty and decomposes readily into the II chloride and chlorine gas. The bromide and iodide of IV lead are not known to exist.[11] Lead dioxide dissolves in alkali hydroxide solutions to form the corresponding plumbates.[8]

PbO2 + 2 OH + 2 H2O   →   Pb(OH)62–

Lead also has an oxide that is a hybrid between the II and IV oxidation states. Red lead (also called minium) is Pb3O4.

Lead readily forms an equimolar alloy with sodium metal that reacts with alkyl halides to form organometallic compounds of lead such as tetraethyl lead.

[edit] Applications

[edit] Former applications

Contrary to popular belief, pencil 'leads' have never been made from lead. The term comes from the Roman stylus, called the penicillus, which was made of lead.[16] When the pencil originated as a wrapped graphite writing tool, the particular type of graphite being used was named plumbago (lit. "act for lead"; "leadmocku").

[edit] Phrases

A "lead pipe cinch" is something that is absolutely certain. In the 19th century a horse saddle was safe when it was well "cinched". The "lead pipe" qualifier is an obscure "intensifier"[17].