Electrolyte

From Wikipedia, the free encyclopedia

(Redirected from Weak electrolyte)
Jump to: navigation, search

An electrolyte is a substance containing free ions that behaves as an electrically conductive medium. Because they generally consist of ions in solution, electrolytes are also known as ionic solutions, but molten electrolytes and solid electrolytes are also possible. They are sometimes referred to in abbreviated jargon as lytes.

Contents

  • 1 Principles
  • 2 Physiological importance
    • 2.1 Measurement
    • 2.2 Sports drinks
  • 3 Electrochemistry
  • 4 See also
  • 5 External links

[edit] Principles

Electrolytes commonly exist as solutions of acids, bases or salts. Furthermore, some gases may act as electrolytes under conditions of high temperature or low pressure. Electrolyte solutions can also result from the dissolution of some biological (e.g. DNA, polypeptides) and synthetic polymers (e.g. poly(styrene sulfonate), termed polyelectrolytes, which contain multiple charged moieties.

Electrolyte solutions are normally formed when a salt is placed into a solvent such as water and the individual components dissociate due to the thermodynamic interactions between solvent and solute molecules, in a process called solvation. For example, when table salt, NaCl, is placed in water, the following occurs:

NaCl(s) → Na+ + Cl

In simple terms, the electrolyte is a material that dissolves in water to give a solution that conducts an electric current.

An electrolyte in a solution may be described as concentrated if it has a high concentration of ions, or dilute if it has a low concentration. If a high proportion of the solute dissociates to form free ions, the electrolyte is strong; if most of the solute does not dissociate, the electrolyte is weak. The properties of electrolytes may be exploited using electrolysis to extract constituent elements and compounds contained within the solution.

[edit] Physiological importance

In physiology, the primary ions of electrolytes are sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl-), phosphate (PO43-), and hydrogen carbonate (HCO3-). The electric charge symbols of plus (+) and minus (-) indicate that the substance in question is ionic in nature and has an imbalanced distribution of electrons. This is the result of chemical dissociation.

All higher lifeforms require a subtle and complex electrolyte balance between the intracellular and extracellular milieu. In particular, the maintenance of precise osmotic gradients of electrolytes is important. Such gradients affect and regulate the hydration of the body, blood pH, and are critical for nerve and muscle function.

Both muscle tissue and neurons are considered electric tissues of the body. Muscles and neurons are activated by electrolyte activity between the extracellular fluid or interstitial fluid, and intracellular fluid. Electrolytes may enter or leave the cell membrane through specialized protein structures embedded in the plasma membrane called ion channels. For example, muscle contraction is dependent upon the presence of calcium (Ca2+), sodium (Na+), and potassium (K+). Without sufficient levels of these key electrolytes, muscle weakness or severe muscle contractions may occur.

Electrolyte balance is maintained by oral, or in emergencies, intravenous (IV) intake of electrolyte-containing substances, and is regulated by hormones, generally with the kidneys flushing out excess levels. In humans, electrolyte homeostasis is regulated by hormones such as antidiuretic hormone, aldosterone and parathyroid hormone. Serious electrolyte disturbances, such as dehydration and overhydration, may lead to cardiac and neurological complications and, unless they are rapidly resolved, will result in a medical emergency.

[edit] Measurement

Measurement of electrolytes is a commonly performed diagnostic procedure, performed via blood testing with ion selective electrodes or urinalysis by medical technologists. The interpretation of these values is somewhat meaningless without analysis of the clinical history and is often impossible without parallel measurement of renal function. Electrolytes measured most often are sodium and potassium. Chloride levels are rarely measured except for arterial blood gas interpretation since they are inherently linked to sodium levels. One important test conducted on urine is the specific gravity test to determine the occurrence of electrolyte imbalance.

[edit] Sports drinks

Electrolytes are commonly found in sports drinks. In oral rehydration therapy, electrolyte drinks containing sodium and potassium salts replenish the body's water and electrolyte levels after dehydration caused by exercise, diaphoresis, diarrhea, vomiting or starvation. Giving pure water to such a person is not the best way to restore fluid levels because it dilutes the salts inside the body's cells and interferes with their chemical functions. This can lead to water intoxication.

Sports drinks such as Gatorade, Powerade, or Lucozade are electrolyte drinks with large amounts of added carbohydrates, such as glucose, to provide energy. The drinks commonly sold to the public are isotonic (with osmolality close to that of blood), with hypotonic (with a lower osmolality) and hypertonic (with a higher osmolality) varieties available to athletes, depending on their nutritional needs.[1]

It is really not necessary to replace losses of sodium, potassium and other electrolytes during exercise since it is unlikely that a significant depletion the body's stores of these minerals will occur during normal training. However, in extreme exercising conditions over 5 or 6 hours (an Ironman or ultramarathon, for example) the consumption of a complex sports drink with electrolytes is recommended. Athletes who do not consume electrolytes under these conditions risk overhydration (or hyponatremia). [2]

Because sports drinks typically contain very high levels of sugar, they are not recommended for regular use by children. Rather, specially-formulated pediatric electrolyte solutions are recommended. Sports drinks are also not appropriate for replacing the fluid lost during diarrhea. The role of sports drinks is to inhibit electrolyte loss but are insufficient to restore balance once it occurs.[citation needed] Medicinal rehydration sachets and drinks are available to replace the key electrolyte ions lost. Dentists recommend that regular consumers of sports drinks observe precautions against tooth decay.

Electrolyte and sports drinks can be home-made by using the correct proportions of sugar, salt and water. [3]

[edit] Electrochemistry

Main article: electrolysis

When two electrodes are placed in an electrolyte and a voltage is applied, the electrolyte will conduct electricity. Lone electrons normally cannot pass through the electrolyte; instead, a chemical reaction occurs at the cathode consuming electrons from the cathode, and another reaction occurs at the anode producing electrons to be taken up by the anode. As a result, a negative charge cloud develops in the electrolyte around the cathode, and a positive charge develops around the anode. The ions in the electrolyte move to neutralize these charges so that the reactions can continue and the electrons can keep flowing.

For example, in a dilute solution of ordinary salt (sodium chloride, NaCl) in water, the cathode reaction will be

2H2O + 2e → 2OH + H2

and hydrogen gas will bubble up; the anode reaction is

2H2O → O2 + 4H+ + 4e

and oxygen gas will be liberated. The positively charged sodium ions Na+ will move towards the cathode neutralizing the negative charge of OH there, and the negatively charged chlorine ions Cl will move towards the anode neutralizing the positive charge of H+ there. Without the ions from the electrolyte, the charges around the electrode would slow down continued electron flow; diffusion of H+ and OH through water to the other electrode takes longer than movement of the much more prevalent salt ions.

In other systems, the electrode reactions can involve the metals of the electrodes as well as the ions of the electrolyte.

Electrolytic conductors are used in electronic devices where the chemical reaction at a metal/electrolyte interface yields useful effects.